Vojenské rozhledy / Czech Military Review Nr. 4/2017: 99-118
Quantum Radar - Principles and PerspectivesNonreviewed - Other
This paper provides an introduction to the quantum radars that can cause a revolution in the modern warfare in the near future. The goal of the paper is to present basic principles of quantum radars without deep knowledge of quantum mechanics, where its properties and phenomena important for the quantum radar will be outlined. After the physics introduction, the three basic designs of how the quantum radar could work will be presented as well as their advantages. In more details, the main benefits of quantum radars including higher quantum radar cross section and more difficult jamming and localization will be discussed. Next, the state-of-the-art research, the important technologies for quantum radar and its other applications will be commented. Finally, the time scale of the first prototypes and the role of the quantum electronic warfare will be discussed.
Keywords: Quantum Radar; Quantum Mechanics; Electronic Warfare.
Published: December 15, 2017 Show citation
References
- LANZAGORTA, Marco. Quantum Radar. Synthesis Lectures on Quantum Computing [online]. 2011, 3(1), 1-139 [cit. 2017-09-06]. DOI: 10.2200/S00384ED1V01Y201110QMC005. ISSN 1945-9726.
- China successfully develops quantum radar system. In: Global Times [online]. Čína: Global Times, 2016 [cit. 2017-09-06]. Dostupné z: http://www.globaltimes.cn/content/1005525.shtml
- BURDGE, G., G. DEIBNER, J. SHAPRIO, et al. Quantum Sensor Program: Final Technical Report. AFRL-RI-RS-TR-2009-208. Melbourne, FL, USA, 2009. Dostupné také z: www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA506209
- HEISENBERG, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik [online]. 1927, 43(3-4), 172-198 [cit. 2017-09-06]. DOI: 10.1007/BF01397280. ISSN 1434-6001.
- GIOVANNETTI, V. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science [online]. 2004, 306(5700), 1330-1336 [cit. 2017-09-06]. DOI: 10.1126/science.1104149. ISSN 0036-8075.
- GIOVANNETTI, Vittorio, Seth LLOYD a Lorenzo MACCONE. Quantum Metrology. Physical Review Letters [online]. 2006, 96(1), - [cit. 2017-09-06]. DOI: 10.1103/PhysRevLett.96.010401. ISSN 0031-9007.
- DUŠEK, Miloslav a Pavel CEJNAR. Kvantové hlavolamy V. Vesmír [online]. 1998, 77(7), 393- [cit. 2017-09-06]. ISSN 1214-4029. Dostupné z: http://casopis.vesmir.cz/clanek/kvantove-hlavolamy-v
- HUTTNER, Bruno a Stephen M. BARNETT. Quantization of the electromagnetic field in dielectrics. Physical Review A [online]. 1992, 46(7), 4306-4322 [cit. 2017-09-06]. DOI: 10.1103/PhysRevA.46.4306. ISSN 1050-2947.
- JEFFERS, J. R., N. IMOTO a R. LOUDON. Quantum optics of traveling-wave attenuators and amplifiers. Physical Review A [online]. 1993, 47(4), 3346-3359 [cit. 2017-09-06]. DOI: 10.1103/PhysRevA.47.3346. ISSN 1050-2947.
- SKOLNIK, Merrill I. Radar handbook. 3rd ed. New York: McGraw-Hill, c2008. ISBN 9780071485470.
- SMITH III, James F. Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement. In: Proc. SPIE [online]. 7342. 2009, 73420A-12 [cit. 2017-09-06]. DOI: 10.1117/12.819918.
- LANZAGORTA, Marco. Low-brightness quantum radar. In: Proc. SPIE [online]. 9461. 2015, s. 946113-25 [cit. 2017-09-06]. DOI: 10.1117/12.2177577.
- KAPALE, Kishore T., Leo D. DIDOMENICO, Hwang LEE, Pieter KOK a Jonathan P. DOWLING. Quantum Interferometric Sensors. In: ArXiv [online]. ArXiv:quant-ph/0507150. 2005 [cit. 2017-09-06].
- LLOYD, S. Enhanced Sensitivity of Photodetection via Quantum Illumination. Science [online]. 2008, 321(5895), 1463-1465 [cit. 2017-09-06]. DOI: 10.1126/science.1160627. ISSN 0036-8075.
- BARZANJEH, Shabir, Saikat GUHA, Christian WEEDBROOK, David VITALI, Jeffrey H. SHAPIRO a Stefano PIRANDOLA. Microwave Quantum Illumination. Physical Review Letters [online]. 2015, 114(8), - [cit. 2017-09-06]. DOI: 10.1103/PhysRevLett.114.080503. ISSN 0031-9007.
- TAN, Si-Hui, Baris I. ERKMEN, Vittorio GIOVANNETTI, Saikat GUHA, Seth LLOYD, Lorenzo MACCONE, Stefano PIRANDOLA a Jeffrey H. SHAPIRO. Quantum Illumination with Gaussian States. Physical Review Letters [online]. 2008, 101(25), - [cit. 2017-09-06]. DOI: 10.1103/PhysRevLett.101.253601. ISSN 0031-9007.
- SHAPIRO, Jeffrey H a Seth LLOYD. Quantum illumination versus coherent-state target detection. New Journal of Physics [online]. 2009, 11(6), 063045- [cit. 2017-09-06]. DOI: 10.1088/1367-2630/11/6/063045. ISSN 1367-2630.
- GUHA, Saikat, Jeffrey H. SHAPIRO, Timothy RALPH a Ping Koy LAM. Enhanced standoff sensing resolution using quantum illumination. In: AIP Conference Proceedings [online]. 1363. 2011, s. 113-116 [cit. 2017-09-06]. DOI: 10.1063/1.3630159.
- OLLIVIER, Harold a Wojciech H. ZUREK. Quantum Discord: A Measure of the Quantumness of Correlations. Physical Review Letters [online]. 2001, 88(1), - [cit. 2017-09-06]. DOI: 10.1103/PhysRevLett.88.017901. ISSN 0031-9007.
- BRANDSEMA, Matthew J., Ram M. NARAYANAN a Marco LANZAGORTA. Range detection using entangled optical photons. In: Proc. SPIE [online]. 9461, s. 946111-10 [cit. 2017-09-06]. DOI: 10.1117/12.2176756.
- JIANG, Kebei, Hwang LEE, Christopher C. GERRY a Jonathan P. DOWLING. Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit. Journal of Applied Physics [online]. 2013, 114(19), 193102- [cit. 2017-09-06]. DOI: 10.1063/1.4829016. ISSN 0021-8979.
- BRADSEMA, Matthew J., Ram M. NARAYANAN a Marco LANZAGORTA. Design considerations for quantum radar implementation. In: Proc. SPIE [online]. 9077. 90770T-8 [cit. 2017-09-06]. DOI: 10.1117/12.2053117.
- LANZAGORTA, Marco. Quantum radar cross sections. In: Proc. SPIE [online]. 7727. 77270K-16 [cit. 2017-09-06]. DOI: 10.1117/12.854935.
- LANZAGORTA, Marco a Salvador VENEGAS-ANDRACA. Algorithmic analysis of quantum radar cross sections. In: Proc. SPIE: 9461 [online]. s. 946112-8 [cit. 2017-09-06]. DOI: 10.1117/12.2177238.
- BERESTECKIJ, Vladimir, Jevgenij LIFSHITZ a Lev PITAEVSKII. Course of theoretical physics: Quantum Electrodynamics. 2nd ed. Přeložil J. B. SYKES, přeložil J.S. BELL. Oxford: Butterworth-Heinemann, 2008. ISBN 978-0750633710.
- BRANDSEMA, Matthew J., Ram M. NARAYANAN a Marco LANZAGORTA. CROSS SECTION EQUIVALENCE BETWEEN PHOTONS AND NON-RELATIVISTIC MASSIVE PARTICLES FOR TARGETS WITH COMPLEX GEOMETRIES. Progress In Electromagnetics Research M [online]. 2017, 54, 37-46 [cit. 2017-09-07]. DOI: 10.2528/PIERM16112308. ISSN 1937-8726.
- BRANDSEMA, Matthew J., Ram M. NARAYANAN a Marco LANZAGORTA. Electric and magnetic target polarization in quantum radar. In: Proc. SPIE [online]. 10188. 2017, 101880C-10 [cit. 2017-09-07]. DOI: 10.1117/12.2263517.
- BRANDSEMA, Matthew J., Ram M. NARAYANAN a Marco LANZAGORTA. The Effect of Polarization on the Quantum Radar Cross Section Response. IEEE Journal of Quantum Electronics [online]. 2017, 53(2), 1-9 [cit. 2017-09-07]. DOI: 10.1109/JQE.2017.2657321. ISSN 0018-9197.
- LANZAGORTA, Marco, Jeffrey UHLMANN, Oliverio JITRIK, Salvador E. VENEGAS-ANDRACA a Seth WIESMAN. Quantum computation of the electromagnetic cross section of dielectric targets. In: Proc. SPIE [online]. 9829. 2016, 98291I-15 [cit. 2017-09-07]. DOI: 10.1117/12.2224078.
- SHI-LONG, Xu, Hu YI-HUA, Zhao NAN-XIANG, Wang YANG-YANG, Li LE a Guo LI-REN. Impact of metal target's atom lattice structure on its quantum radar cross-section. Acta Physica Sinica [online]. 2015, 64(15), 154203 [cit. 2017-09-07]. DOI: 10.7498/aps.64.154203.
- ALLEN, E.H. a M. KARAGEORGIS. Radar systems and methods using entangled quantum particles. 2005. USA. US Patent 7,375,802. Zapsáno 4. srpen 2005.
- KANIA, Elsa a Stephen ARMITAGE. Disruption Under the Radar: Chinese Advances in Quantum Sensing. China Brief [online]. The Jamestown Foundation, 2017, 17(11) [cit. 2017-09-07]. Dostupné z: https://jamestown.org/program/disruption-under-the-radar-chinese-advances-in-quantum-sensing/
- YIN, Juan, Yuan CAO, Yu-Huai LI, et al. Satellite-based entanglement distribution over 1200 kilometers. Science [online]. 2017, 356(6343), 1140-1144 [cit. 2017-09-07]. DOI: 10.1126/science.aan3211. ISSN 0036-8075.
- EMARY, C., B. TRAUZETTEL a C. W. J. BEENAKKER. Emission of Polarization-Entangled Microwave Photons from a Pair of Quantum Dots. Physical Review Letters [online]. 2005, 95(12), - [cit. 2017-09-07]. DOI: 10.1103/PhysRevLett.95.127401. ISSN 0031-9007.
- WALSH, Evan D., Dmitri K. EFETOV, Gil-Ho LEE, et al. Graphene-Based Josephson-Junction Single-Photon Detector. Physical Review Applied [online]. 2017, 8(2), - [cit. 2017-09-07]. DOI: 10.1103/PhysRevApplied.8.024022. ISSN 2331-7019.
- LANZAGORTA, Marco. Quantum imaging for underwater arctic navigation. In: Proc. SPIE [online]. 10188. 2017, 101880G-27 [cit. 2017-09-07]. DOI: 10.1117/12.2262654.
- ZHAO, Ming, Jeffrey UHLMANN, Marco LANZAGORTA, Jayanth KANUGO, Aditya PARASHAR, Oliverio JITRIK a Salvador E. VENEGAS-ANDRACA. Passive ghost imaging using caustics modeling. In: Proc. SPIE [online]. 10188. 2017, 101880H-9 [cit. 2017-09-07]. DOI: 10.1117/12.2262656.
- LANZAGORTA, Marco, Oliverio JITRIK, Jeffrey UHLMANN a Salvador E. VENEGAS-ANDRACA. Quantum synthetic aperture radar. In: Proc. SPIE [online]. 10188. 2017, 101880F-11 [cit. 2017-09-07]. DOI: 10.1117/12.2262645.
- LANZAGORTA, Marco, Oliverio JITRIK, Jeffrey UHLMANN a Salvador VENEGAS. Quantum seismography. In: Proc. SPIE [online]. 98291. 2016, 98291G-25 [cit. 2017-09-07]. DOI: 10.1117/12.2223831.
- LANZAGORTA, Marco, Oliverio JITRIK, Jeffrey UHLMANN a Salvador E. VENEGAS-ANDRACA. The Lemur Conjecture. In: Proc. SPIE [online]. 10188, 2017, 101880D-12 [cit. 2017-09-07]. DOI: 10.1117/12.2262634.
- JITRIK, Oliverio, Marco LANZAGORTA, Jeffrey UHLMANN a Salvador E. VENEGAS-ANDRACA. Quantum geodesy. In: Proc. SPIE [online]. 10188. 2017, s. 101880E-11 [cit. 2017-09-07]. DOI: 10.1117/12.2262640.
- LEWIS, A. M., M. KRÄMER a M. TRAVAGNIN. Quantum technologies: Implications for European policy - issues for debate. JRC Science for Policy report [online]. 2016, (EUR 28103), - [cit. 2017-09-07]. DOI: 10.2788/314355. ISSN 1831-9424.
- TOP500 [online]. [cit. 2017-09-15]. Dostupné z: https://www.top500.org/


